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Propagation Constants for TE and TM Sutface Waves

on an Anisotropic
P. R. LONGAKERY, MEMBER, IEEE

Summary—Maxwell’s equations for wave propagation in a
cylindrical anisotropic dielectric rod have been solved for various
values of the longitudinal and transverse dielectric constants with the
help of an IBM 7090 computer. The solutions are limited to modes
having no rotational dependence about the direction of propagation.
Families of curves for various ratios of longitudinal to transverse di-
electric constants are given, showing the relationship between the
guided wavelength and the diameter of the rod. Equations for the cut-
off and asymptotic behavior are also given.

INTRODUCTION

ITH THE RECENT development of the opti-
cal maser and the attendant high-power, mono-

chromatic, coherent radiation, attention has
been focused upon nonlinear interactions in solid media
which heretofore have been almost impossible to pro-
duce. It is well known that the interaction of electro-
magnetic waves in a solid is produced by nonlinearities
in the medium, and that the symmetry properties of the
medium govern to a large extent the magnitude of the
interaction, the greatest effect occurring when the me-
dium lacks a center of inversion symmetry.>*> For many
experiments, this requirement leads to a crystal which
is anisotropic in many of its properties. In addition, it is
usually necessary to match the velocities of the waves
involved to produce as great an interaction length as
possible. One experimental proposal is the parametric
generation of microwaves by an optical maser beam
through nonlinear interactions in a crystalline solid.?-*
This requires the phase-matching of microwaves to opti-
cal waves in a medium which has an anisotropic dielec-
tric constant. This may be accomplished conveniently
by utilizing the high-phase velocity (relative to that in
the infinite dielectric) of a surface wave on a cylindrical
dielectric rod. Since little work has appeared in the
literature concerning the propagation of microwaves on
an anisotropic dielectric has prompted this calculation.
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The solution of Maxwell's equations for a cylindrical
system is straightforward both for the case of isotropic
and anisotropic dielectric constants. However, in order
to obtain information other than the cutoff condition
and asymptotic behavior of the waves, two transcen-
dental equations must be solved simultaneously.
Graphically, this is a laborious process and precludes
much more than a point solution. An IBM 7090 com-
puter has been programmed to solve certain of these
equations, enabling us to obtain the propagation in-
formation rapidly for any value of dielectric constant.
Only modes independent of the angle of rotation about
the rod axis will be considered, since only for such modes
is separation into pure transverse magnetic waves
(TM) or transverse electric waves (TE) possible.

TM SoLUTIONS

It is assumed that the dielectric rod and surrounding
medium have permeability u and that both are lossless.
The surrounding medium is assumed to have an iso-
tropic dielectric constant €, and the rod, anisotropic di-
electric constants, er in the transverse direction (radial)
and ez in the longitudinal direction (along the rod axis).
This is treated by writing

SE = GTET + GLEL = D
and by imposing the proper cylindrical boundary condi-
tions on Maxwell’s equations.

For a transverse magnetic (TM) wave, two equations
are found which determine the propagation constants

wJo(x)/ 7o' (%) = KryHo(y)/Ho'(y) (1
o? + (K1/Kr)(y/)* = (wd/N)* (K1 — Ki/Kz)  (2)

where x=a,7 and y=ayr

Jo(x) = Bessel function of zeroth order
Jo' (x) = Derivative of zeroth order Bessel function
Hy(y) =Zeroth order Hankel function of the first
kind
H{ (y) = Derivative of zeroth order Hankel function
of the first kind
7 = Cylinder radius
d = Cylinder diameter
No= Wavelength of the unguided wave
Kp=¢1/e=Ratio of longitudinal dielectric constant of
the rod to the surrounding dielectric
Ratio of transverse dielectric constant of the
rod to the surrounding dielectric.

KT'—“GT/G:
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Upon setting K;/Kr=1, (1) and (2) become the de-
termining equations for the case of an isotropic dielec-
tric rod. See, for example, Kiely® or Collin.t

The equations of the TM waves are:

inside the rod,

H,=H,=E;=0

E, = iA[Kr/Kr][(\N):Kr — Ki/Kp]=V2T 1(aip)
= AJy(ap)
Hy = iAK[e/u]*[(\No)? K1 — K1/ Kr|7%T 1(a1p)

=
|

a1 = 7(1/7)(d/N) K1 — (Kr/Kr)(N/N)2]M;
outside the rod,
Ho=H,=E;=0
E, = iCl(\N)? — 1742 H ()
E, = CHy(op)
Hy = iCle/u]'2[(\/Ao)? — 1]712H (asp)

I

where
as = w(1/7)(d/N)[1 — (Ao/N)?]P/2 (3)

A=Wavelength of the guided wave
Ji(oup) = First-order Bessel function
H:(ozp) = First-order Hankel function of the first kind.

A4 or Cis an arbitrary constant, but the ratio of the
two is determined by the equation 4/C=H(y)/Jo(x).

Because of the oscillatory nature of the Bessel func-
tion, (1) has an infinite number of solutions. These cor-
respond to the dominant mode (7.¢., the mode with the
lowest cutoff frequency) and all the higher-order modes.
We will concern ourselves here with the dominant mode
whose electric field configuration appears as shown in
Fig. 1.

A convenient way of expressing the propagation in-
formation is to plot A/Ao as a function of d/A; by com-
bining (1) and (2) with

A/A)? = [1 — y?(\o/7d)?] ! (4)

which is a restatement of (3). Egs. (1), (2), and (4) have
been solved in this manner by an IBM 7090 computer.
In order to get full utility from the information, a value
of K;/Kr is given on each graph and a family of curves
is produced by then plotting various values of K, such
that reasonably accurate interpolation can be carried
out. The graphs are shown in Figs. 2—6.
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Fig. 1—Transverse rod section, dominant TM mode,
K1,=20, Ki/Kr=0.5, and A/x=0.67.

TM AsyMPTOTES AND CUTOFF
Two limiting equations can be written algebraically,
the first of which is
lim )\/)\0 = [KT]_IN. (5)

d/Xo—> e
The second, which gives the so-called cutoff condition, is

Dominant Mode

[2/%] C.0.

= 2.405[1/7|[KL — Ki/Kr]72  (6)

This is the minimum value of d/A\s for which bounded
solutions exist and it occurs at A/A¢>1 when the argu-
ment of the Hankel function becomes real, whereupon
the function itself becomes oscillatory.

In (6) the value 2.405 is the argument for the first
zero of Jo(x). The cutoff condition for the next highest
mode is given by replacing 2.405 with the value of the
argument which gives the next zero in Jo(x). Cutoff
for successively higher modes is obtained by an analo-
gous process. The higher-order modes have the same
limiting value of A/A¢ as shown in (5). It should be noted
in the preceding that on setting K;/Kr=1 the equa-
tions and propagation constants for TM waves in an
isotropic rod are generated.

TE SOLUTIONS

By the nature of the TE waves, only Ky has any
effect on their propagation; therefore, one need only
substitute Ky for the dielectric constant in the solutions
for the isotropic dielectric rod. The isotropic case has
been treated for TM, TE and hybrid modes by Kiely.!
Since our program also gives the TE solutions, a graph
of the propagation constants for TE waves in an iso-
tropic (anisotropic) dielectric rod has been included.
This is shown in Fig. 7.
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Fig. 5—Computer solutions for dominant TM wave
propagation in an anisotropic dielectric rod.

Fig. 2—Computer solutions for dominant TM wave
propagation in an anisotropic dielectric rod.

o

Fig. 6—Computer solutions for dominant TM wave
propagation in an anisotropic dielectric rod.

Fig. 3—Computer solutions for dominant TM wave
propagation in an anisotropic dielectric rod.

Fig. 4+ —Computer solutions for dominant TM wave Fig. 7—Computer solutions for dominant TE wave propagation
propagation in an anisotropic dielectric rod. in an isotropic or anisotropic diclectric rod.
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CONCLUSION

Unlike hybrid modes, the pure TM and TE modes
have a minimum value of d/A, for which they are bound
to the rod. For values of d/Ay smaller than this, the
modes are neither bound to the rod nor will propagate
independently of it, hence are effectively cut off. This
shows on the graphs as a nonzero slope for the curves
at A/Ao=1, the respective values of d/\ being given by
(6) for the TM modes and by

Dominant Mode
[d/M] = 2.405[1/7r] [KT — 1]——1/2 (7
C.0.

for the TE modes.
The asymptotic value of /A, for large d/\, is given
by (5) for both TM and TE modes and is the value of
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A/Ao that the modes would have in a dielectric medium
of infinite extent.

It can be seen that any value of A\/Ay between 1 and
[Kz]7Y? may be selected by proper choice of d/Ay; how-
ever, as d/A; becomes smaller, more of the energy of the
wave is propagated outside the rod. In general, an in-
crease in dielectric constant has the opposite effect of
binding the wave more tightly to the rod. Since the
microwave index of refraction may be varied from 1 to
[Kr]¥2, which is generally higher for a given dielectric
than the respective optical index of refraction, one can
almost always effect a match of velocities in an optical-
microwave type experiment.
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Further Formulas for Calculating
Approximate Values of the Zeros of
Certain Combinations of Bessel
Functions*

INTRODUCTION

In a recent letter Gunston?! has presented
a wonderfully simple approximate formula
for the smallest z zero of the Bessel function
equation

Tp(2)Nplks) ~ Jp(kz)Np(z) = 0 1)

where J, and N, are, respectively, the Bessel
functions of the first and second kinds of
real-order p. This communication is in-
tended to draw attention to the existence of
similar approximate formulas for both the
larger z zeros of (1) and the roots of the
equally-important companion equation

T BN (kz) — T, (B5)N,/(z) =0 (2)

’

where ’ indicates differentiation.

BACKGROUND

In the usual physical cases of interest the
parameter p is an arbitrary real number
while % is generally positive. It is known that
under these conditions the zeros of (1) as a
function of z are all real, snnple (see Gray
and Mathews?) and infinite in number, and

* Received June 27, 1963.
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these results can be extended to the s zeros of
(2) (see Cochran3), Furthermore, since both
(1) and (2) are unaffected by replacing either
zby —zor p by —p, attention need only be
addressed to the case of positive values.
As pointed out by Klinet and Waldron?
the solutions of equations (1) and (2) ap-
proach those of the equations J,(kz) =0 and
Jp'(kz) =0, respectively, with increasing % or
p The latter author even indicates the re-
gions among his tabulated values in which
this approximation may be reasonably made.
Moreover, the familiar asymptotic expres-
sions of McMahont suffice for the calcula-
tion of the roots of both (1) and (2) when-
ever the quantity 8=Sx/(k—1) is appre-
ciable, where S is the number of the root
when arranged in order of magnitude. As
cogently discussed by Waldron,5 it is con-
venient to index the roots of the primed
equation (2) beginning with S=0 rather
than with S=1 as one does for the solutions
of (1). This not only obviates the difficulty
wherein, under the usual numbering scheme,
the McMahon expression with g=.S7/
(B—1) gives the asymptotic expansion for

hran, “Remarks on the zeros of
],,(z)Y,,(kz) — Y,,(z) Jy(k2) and Jy'(2) ¥y’ (k2)
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. Kline, “Some Bessel eq_uatlons and their ap-
plication to guide and cavity theory,” J. Math. Phys.,
vol. 27, pp. 27-48; April, 1948,

5 R.A. VValdron “Theor} of the helical waveguide
of rectangular cross-section,” J. Brit. IRE, vol. 17,
pp. 577-592, October, 1957,

7. McMahon “On the roots of the Bessel and cer-
tain related functxons,”Arm Math., vol. 9, pp. 23-30;
October; 1894,

the (S+1)st root of (2), but it also serves to
set apart the fundamentally different group
of roots corresponding to .S=0. When p=0
these special zeros of (2) do not occur; on
the other hand, for >0 a representation in
terms of powers of (k—1)/+/4k has been
derived for them by Buchholz.”

ForMuLAS

Let z and 2" denote roots of the unprimed
equation (1) and of the primed equation (2),
respectively, and let & be a positive constant.
If 6=(k—1)z or =(k—1)2', the author has
recently developed asymptotic expressions
for the Sth zeros of (1) and (2) in the follow-
ing form:

gmsg _ $é 8
2o 48t — (Sm)z 2
a(s,S)
b(s,.5)
The functions a(s, S) and b(3, .S), whose
precise nature need not concern us here, are
independent of p. Solving for 2,5 or #'p.s

using the first two terms of the expansion
yields

+ % b+ow. ®

Zp,8 ] (Sm)? 4p2
gz'p,s§ - (k—1)2+(k—f—1)2 @
and

&po = 2p/(k + 1).
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