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Propagation Constants for TE and TM Surface Waves

on an Anisotropic Dielectric Cylinder*

p. R, LONGAKER~, MEMBER, IEEE

Summary—Maxwell’s equations for wave propagation in a
cylindrical anisotropic dielectric rod have been solved for various

values of the longitudinal and transverse dielectric constants with the
help of an IBM 7090 computer. The solutions are limited to modes

having no rotational dependence about the direction of propagation.

Families of curves for various ratios of longitudinal to transverse &l-

electric constants are given, showing the relationship between the

guided wavelength and the diameter of the rod. Equations for the cut-

off and asymptotic behavior are also given.

INTRODtTCTION

w

ITH THE RECENT development of the opti-

cal maser and the attendant high-power, mono-

chromatic, coherent radiation, attention has

been focused upon nonlinear interactions in solid media

which heretofore have been almost impossible to pro-

duce. It is well known that the interaction of electro-

magnetic waves in a solid is produced by nonlinearities

in the medium, and that the symmetry properties of the

medium govern to a large extent the magnitude of the

interaction, the greatest effect occurring when the me-

dium lacks a center of inversion syrn metry. 1,’ For many

experiments, this requirement leads to a crystal which

is anisotropic in many of its properties. In addition, it is

usually necessary to match the velocities of the waves

involved to produce as great an interaction length as

possible. One experimental proposal is the parametric

generation of microwaves by an optical maser beam

through nonlinear interactions in a crystalline solid. 3,4

This requires the phase-matching of microwaves to opti-

cal waves in a medium which has an anisotropic dielec-

tric constant. This may be accomplished conveniently

by utilizing the high-phase velocity (relative to that in

the infinite dielectric) of a surface wave on a cylindrical

dielectric rod. Since little work has appeared in the

literature concerning the propagation of microwaves on

an anisotropic dielectric has prompted this calculation.
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The solution of Maxwell’s equations for a cylindrical

system is straightforward both for the case of isotropic

and anisotropic dielectric constants. However, in order

to obtain information other than the cutoff condition

and asymptotic behavior of the waves, two transcen-

dental equations must be solved si rnultaneously.

Graphically, this is a laborious process and precludes

much more than a point solution. An IBM 7090 com-

puter has been programmed to solve certain of these

equations, enabling us to obtain the propagation in-

formation rapidly for any value of dielectric constant.

Only modes independent of the angle of rotation about

the rod axis will be considered, since only for such modes

is separation into pure transverse magnetic waves

(TM) or transverse electric waves (TE) possible.

TM SOLUTIONS

It is assumed that the dielectric rod and surrounding

medium have permeability M and that both are lossless.

The surrounding medium is assumed to have an iso-

tropic dielectric constant e, and the rod, anisotropic di-

electric constants, CT in the transverse direction (radial)

and ~L in the longitudinal direction (along the rod axis).

This is treated by writing

~E = eTET + GLEL = D

and by imposing the proper cylindrical boundary condi-

tions on Maxwell’s equations.

For a transverse magnetic (TM) wave, two equations

are found which determine the propagation constants

GLTo(x)/Yo’ (x) = KLy~o(Y)/~o’ (Y) (1)

$2 + (KL/KT) (’y/’i) 2 = (d/XO) 2(KL .- KL/KT) (2)

where x = cqr and y = cizr

-TO(x) = Bessel function of zeroth order

Jo’ (cc) = Derivative of zeroth order Bessel function

Ho(y) = Zeroth order Hankel function of the first

kind

Ho’ (y) = Derivative of zeroth order H ankel function

of the first kind

r = Cylinder radius

d = Cylinder diameter

A.= Wavelength of the unguided wave

K~ = c~/c = Ratio of longitudinal dielectric constant of

the rod to the surrounding dielectric

~T = e~/e = Ratio of transverse dielectric constant of the

rod to the surrounding dielectric.
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Upon setting K~/K~ = 1, (1) and (2) become the de-

termining equations for the case of an isotropic dielec-

tric rod. See, for example, Kielys or Collin.o

The equations of the TM waves are:

inside the rod,

Hz =

E, =

E;=

H4 =

where

al =

HD=.E4=0

iA [KL/KT] [(A/Ao) 2KL — KL/KT]–1’2Jl(ff @)

AJo(a,p)

i~KL[C/P]l/2[(X/AO) 2K~ — KL/KT]–1’2JI(aIP)

IT(l/~) (d/XO) [K~ — (KL/KT) (Ao/A)2]1/2;

outside the rod,

H,= HP= E4=0

E, == iC[(X/AO)2 – 1]-1/2Hl(a2p)

E. = cHo(a,P)

H@ = iC[e/&]I/’[(X/A,)Z – 1]-’12HI(CWP)

where

az = m(l/r) (00) [1 — (Ao/A)2] 1’2. (3)

A = Wavelength of the guided wave

J1(cMP) = First-order Bessel function

ffl(cwp) = First-order Hankel function of the first kind.

A or C is an arbitrary constant, but the ratio of the

two is determined by the equation A/C= Ho(Y) /Jo(x).

Because of the oscillatory nature of the Bessel func-

tion, (1) has an infinite number of solutions. These cor-

respond to the dominant mode (i. e., the mode with the

lowest cutoff frequency) and all the higher-order modes.

We will concern ourselves here with the dominant mode

whose electric field configuration appears as shown in

Fig. 1.

A convenient way of expressing the propagation in-

formation is to plot A/h. as a function of d/XO by com-

bining (1) and (2) with

(VXO)’ = [1 – y’(Ao/7rd)’]-’ (4)

which is a restatement of (3). Eqs. (1), (2), and (4) have

been solved in this manner by an IBM 7090 computer.

In order to get full utility from the information, a value

of KL/KT is given on each graph and a family of curves

is produced by then plotting various vaIues of h’L, such

that reasonably accurate interpolation can be carried

out. The graphs are shown in Figs. 2–6.
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Fig. l—Transverse rod section, dominant TM
A“L=20, K./K~=O.5, and h/k= O.67.

TM ASYMPTOTES AND CUTOFF

mode.

Two limiting equations can be written algebraically,

the first of which is

lim A/Ao = [lCT]-’l’. (5)
dlio+ m

The second, which gives the so-called cutoff condition, is

Dominant Mode
[V~ol ~ ~

. .

—– 2.405 [1/T] [KL – KI,/KT]-l/2. (6)

This is the minimum value of d/AO for which bounded

solutions exist and it occurs at A/Ao >1 when the argu-

ment of the Hankel function becomes real, whereupon

the function itself becomes oscillatory.

In (6) the value 2.405 is the argument for the first

zero of JO(X). The cutoff condition for the next highest

mode is given by replacing 2.405 with the value of the

argument which gives the next zero in JO(x). Cutoff

for successively higher modes is obtained by an analo-

gous process. The higher-order modes have the same

limiting value of A/XO as shown in (5). It should be noted

in the preceding that on setting KL/KT = 1 the equa-

tions and propagation constants for TM waves in an

isotropic rod are generated.

TE SOLUTIONS

By the nature of the TE waves, only KT has any

effect on their propagation; therefore, one need only

substitute KT for the dielectric constant in the solutions

for the isotropic dielectric rod. The isotropic case has

been treated for TM, TE and hybrid modes by Kiely.’

Since our program also gives the TE solutions, a graph

of the propagation constants for TE waves in an iso-

tropic (anisotropic) dielectric rod has been included.

This is shown in Fig. 7.
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Fig. 2—Computer solutions for dominant TM wave
propagation in an anisotropic dielectric rod.
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Fig. 3—Computer solutions for dominant TM wave
propagation in au auisotropic dielectric rocl.
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Fig. 4—Computer solutions for dorninant.TM w-ave
propagation in an anisotropic dielectric rod.
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Fig. .5-Computer solutions for dominant TM wave

propagation in an anisotropic dielectric rod.

06, _,_._.,
,<–-+ – t---* .–j-

04+

‘--H+-%”” ‘“-T-
d/h.

Fig. 6—Computer solutions for dominant TM wave
propagation in an anisotropic dielectric rod.
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Fig. 7—Computer solutions for dominant TE wave propagation
in au isotropic or ankotropic dielectric rod.
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CONCLUSION

Unlike hybrid modes, the pure TM and TE modes

have a minimum value of d/iO for which they are bound

to the rod. For values of d/hO smaller than this, the

modes are neither bound to the rod nor will propagate

independently of it, hence are effectively cut off. This

shows on the graphs as a nonzero slope for the curves

at X/Xi2 = 1, the respective values of d/kO being given by

(6) for the TM modes and by

Dominant Mode

[d/Ao] ~ ~ = 2.405 [1/r][K~ – I]-*D (7)

. .

for the TE modes.

The asymptotic value of A/Ao for large d/Xa is given

by (5) for both TM and TE modes and is the value of

A/Xo that the modes would have in a dielectric medium

of infinite extent.

It can be seen that any value of A/Ao between 1 and

[K.]-u’ maybe selected by proper choice of d/AO; how-

ever, as d/X. becomes smaller, more of the energy of the

wave is propagated outside the rod. In general, an in-

crease in dielectric constant has the opposite effect of

binding the wave more tightly to the rod. Since the

microwave index of refraction may be varied from 1 to

[K~]’2, which is generally higher for a given dielectric

than the respective optical index of refraction, one can

almost always effect a match of velocities in an optical-

microwave type experiment.

ACKNO\VLEDGMENT

The authors are indebted to G. S. Heller and R. H.

Kingston for many valuable discussions.

Correspondence

Further Formulas for Calculating

Approximate Values of the Zeros of

Certain Combinations of Bessel

Functions*

INTRODUCTION

In a recent letter Gunstonl has presented

a wonderfully simple approximate formula
for the smallest z zero of the Bessel function

equation

~zSz)Np(kz) – -r,(.kZ)~.(Z) = O (1)

where Jp and NP are, respectively, the Bessel
functions of the first and second kinds of
real-order p. This communication is in-
tended to draw attention to the existence of
similar approximate formulas for both the
larger z zeros of (1) and the roots of the

equally-important companion equation

JAN; – “ran/ = o (2)

where ‘ indicates differentiation.

BACKGROUND

In the usual physical cases of interest the
parameter p is an arbitrary real number

while k is generally positive. It is known that
under these conditions the zeros of (1) as a

function of z are all real, simple (see Grav
and Mathewsz) and infinite in number, aud

* Received JurIe 27, 1963.
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e%cc), vol. MTT.11, pp. 93–94; January, 1963.

2 Gray and Mathews, “Bessel Functions, ” Mac-
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these results can be extended to the c zeros of

(2) (see Cochran3). Furthermore, since both
(1) and (2) are unaffected by replacing either

z by –z or P by –P, attention need only be
addressed to the case of positive values.

As pointed out by Klinel and WaldronE

the solutions of equations (1) and (2) ap-
proach those of the equations Jz(kz) = O and
Jp’(kz) = O, respectively, with increasing k or
p. The latter author even indicates the re-

gions among his tabulated values in which
this approximation may be reasonably made.
Moreover, the familiar asymptotic expres-

sions of McMahonb suffice for the calcula-

tion of the roots of both (1) and (2) when-

ever the quantity 6 = Sw/(k — 1) is appre-
ciable, where S is the number of the root

when arranged in order of magnitude. As

cogently discussed by Waldron,6 it is con-
venient to index the roots of the primed

equation (2) beginning with S= O rather
than with S= 1 as one does for the solutions
of (l). This not only obviates the difficulty
wherein, under the usual numbering scheme,

the McMahon expression with B = Srr/
(k – 1 ) gives the asymptotic expansion for
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October; 1894.

the (S+l)st root of (2), but it also serves to

set apart the fundamentally different group
of roots corresponding to S= O. When P = O

these special zeros of (2) do not occur; on

the other hand, for p> O a representation in

terms of powers of (k – 1) /<4k has been

derived for them by Buchholz.7

FORMULAS

Let z and z’ denote roots of the unprimed

equation (1) and of the primed equation (2),
respectively, and let ti be a positive constant.
If ~= (k–l)z or 3= (k–l)s’, the author has
recently developed asymptotic expressions

for the Sth zeros of (1) and (2) in the follow-
ing form:

1 a(~, S)

+;{6(8,s) 1
+ O(p-’) . (3)

The functions a (8, .S’) and J5(6, S), whose
precise nature need not concern us here, are
independent of p. Solving for ZP,S or Z’P,,S

using the first two terms of the expansion
yields

lz.1=/ ‘ST)’, 4,2(k– 1)2 (k+l)z ‘4)

and

Z’z,, = Z)/(k + 1).

? H. Buchholz, “Reihenentwicklungen fur eine
Determmante mit Zybnderfunktlone n,” Z, ATwew.
Math. Mwh., vol. 29, PD. 356–367; November, 1949.


